Convergence of Gradient Descent Algorithm with Penalty Term for Recurrent Neural Networks

نویسندگان

  • Xiaoshuai Ding
  • Kuaini Wang
چکیده

This paper investigates a gradient descent algorithm with penalty for a recurrent neural network. The penalty we considered here is a term proportional to the norm of the weights. Its primary roles in the methods are to control the magnitude of the weights. After proving that all of the weights are automatically bounded during the iteration process, we also present some deterministic convergence results for this learning methods, indicating that the gradient of the error function goes to zero(weak convergence) and the weight sequence goes to a fixed point(strong convergence), respectively. A numerical example is provided to support the theoretical analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

Convergence Analysis of Multilayer Feedforward Networks Trained with Penalty Terms: a Review

Gradient descent method is one of the popular methods to train feedforward neural networks. Batch and incremental modes are the two most common methods to practically implement the gradient-based training for such networks. Furthermore, since generalization is an important property and quality criterion of a trained network, pruning algorithms with the addition of regularization terms have been...

متن کامل

Convergence of an Online Gradient Algorithm with Penalty for Two-layer Neural Networks

Online gradient algorithm has been widely used as a learning algorithm for feedforward neural networks training. Penalty is a common and popular method for improving the generalization performance of networks. In this paper, a convergence theorem is proved for the online gradient learning algorithm with penalty, a term proportional to the magnitude of the weights. The monotonicity of the error ...

متن کامل

Bifurcations of Recurrent Neural Networks in Gradient Descent Learning

Asymptotic behavior of a recurrent neural network changes qualitatively at certain points in the parameter space, which are known as \bifurcation points". At bifurcation points, the output of a network can change discontinuously with the change of parameters and therefore convergence of gradient descent algorithms is not guaranteed. Furthermore, learning equations used for error gradient estima...

متن کامل

On the convergence speed of artificial neural networks in‎ ‎the solving of linear ‎systems

‎Artificial neural networks have the advantages such as learning, ‎adaptation‎, ‎fault-tolerance‎, ‎parallelism and generalization‎. ‎This ‎paper is a scrutiny on the application of diverse learning methods‎ ‎in speed of convergence in neural networks‎. ‎For this aim‎, ‎first we ‎introduce a perceptron method based on artificial neural networks‎ ‎which has been applied for solving a non-singula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014